1,138 research outputs found

    The role of land cover change in Arctic-Boreal greening and browning trends

    Get PDF
    Many studies have used time series of satellite-derived vegetation indices to identify so-called greening and browning trends across the northern high-latitudes and to suggest that the productivity of Arctic-Boreal ecosystems is changing in response to climate forcing at local and continental scales. However, disturbances that alter land cover are prevalent in Arctic-Boreal ecosystems, and changes in Arctic-Boreal land cover, which complicate interpretation of trends in vegetation indices, have mostly been ignored in previous studies. Here we use a new land cover change dataset derived from Landsat imagery to explore the extent to which land cover and land cover change influence trends in the normalized difference vegetation index (NDVI) over a large (3.76 M km2) area of NASA's Arctic Boreal Vulnerability Experiment, which spans much of northwestern Canada and Alaska. Between 1984 and 2012, 21.2% of the study domain experienced land cover change and 42.7% had significant NDVI trends. Land cover change occurred in 27.6% of locations with significant NDVI trends during this period and resulted in greening and browning rates 48%–128% higher than in areas of stable land cover. While the majority of land cover change areas experienced significant NDVI trends, more than half of areas with stable land cover did not. Further, the extent and magnitude of browning and greening trends varied substantially as a function of land cover class and land cover change type. Forest disturbance from fire and timber harvest drove over one third of statistically significant NDVI trends and created complex mosaics of recent forest loss (as browning) and post-disturbance recovery (as greening) at both landscape and continental scale. Our results demonstrate the importance of land cover changes in highly disturbed high-latitude ecosystems for interpreting trends of NDVI and productivity across multiple spatial scales.Published versio

    Functional factor analysis for periodic remote sensing data

    Get PDF
    We present a new approach to factor rotation for functional data. This is achieved by rotating the functional principal components toward a predefined space of periodic functions designed to decompose the total variation into components that are nearly-periodic and nearly-aperiodic with a predefined period. We show that the factor rotation can be obtained by calculation of canonical correlations between appropriate spaces which make the methodology computationally efficient. Moreover, we demonstrate that our proposed rotations provide stable and interpretable results in the presence of highly complex covariance. This work is motivated by the goal of finding interpretable sources of variability in gridded time series of vegetation index measurements obtained from remote sensing, and we demonstrate our methodology through an application of factor rotation of this data.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS518 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Cosmetic crossings and Seifert matrices

    Get PDF
    We study cosmetic crossings in knots of genus one and obtain obstructions to such crossings in terms of knot invariants determined by Seifert matrices. In particular, we prove that for genus one knots the Alexander polynomial and the homology of the double cover branching over the knot provide obstructions to cosmetic crossings. As an application we prove the nugatory crossing conjecture for twisted Whitehead doubles of non-cable knots. We also verify the conjecture for several families of pretzel knots and all genus one knots with up to 12 crossings.Comment: 16 pages, 5 Figures. Minor revisions. This version will appear in Communications in Analysis and Geometry. This paper subsumes the results of arXiv:1107.203

    A global fingerprint of macro-scale changes in urban structure from 1999 to 2009

    Get PDF
    Urban population now exceeds rural population globally, and 60–80% of global energy consumption by households, businesses, transportation, and industry occurs in urban areas. There is growing evidence that built-up infrastructure contributes to carbon emissions inertia, and that investments in infrastructure today have delayed climate cost in the future. Although the United Nations statistics include data on urban population by country and select urban agglomerations, there are no empirical data on built-up infrastructure for a large sample of cities. Here we present the first study to examine changes in the structure of the world\u27s largest cities from 1999 to 2009. Combining data from two space-borne sensors—backscatter power (PR) from NASA\u27s SeaWinds microwave scatterometer, and nighttime lights (NL) from NOAA\u27s defense meteorological satellite program/operational linescan system (DMSP/OLS)—we report large increases in built-up infrastructure stock worldwide and show that cities are expanding both outward and upward. Our results reveal previously undocumented recent and rapid changes in urban areas worldwide that reflect pronounced shifts in the form and structure of cities. Increases in built-up infrastructure are highest in East Asian cities, with Chinese cities rapidly expanding their material infrastructure stock in both height and extent. In contrast, Indian cities are primarily building out and not increasing in verticality. This new dataset will help characterize the structure and form of cities, and ultimately improve our understanding of how cities affect regional-to-global energy use and greenhouse gas emissions

    Cobordisms to weakly splittable links

    Get PDF
    We show that if a link L with non-zero Alexander polynomial admits a locally flat cobordism to a `weakly m-split link', then the cobordism must have genus at least (m-1)/2. This generalises a recent result of J. Pardon

    Links not concordant to the Hopf link

    Get PDF
    We give new Casson–Gordon style obstructions for a two–component link to be topologically concordant to the Hopf link

    A Calculation of Blanchfield Pairings of 3-Manifolds and Knots

    Get PDF
    We calculate Blanchfield pairings of 3-manifolds. In particular, we give a formula for the Blanchfield pairing of a fibred 3-manifold and we give a new proof that the Blanchfield pairing of a knot can be expressed in terms of a Seifert matrix
    • 

    corecore